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The technique of the initial guess calculation for the conjugate gradient
methaod is proposed. Computational schemes of the linear system solu-
tion with symmetrical positive definite matrices are constructed on its
basis. Their efficient modifications tor systems with five-diagonal
matrices are proposed. The investigation of the developed methods
using the problem of two-dimensional numerical simulation of hipotar
transistors has been carried out. Experimental evidence of the proposed
method’s efficiency has been obtained.  © 1994 Academic Press, Inc.

1. INTRODUCTION

The well-known conjugate gradient (CG) method was
first applied to linear system solution apparently in [1].
From the beginning the various nonstationary iterative
methods were used as preconditioners. Meanwhile, [2]
proposed the idea of applying incomplete decomposition to
the first-order iterative methods. Later, [3] presented a
complete description of the ICCG. Today preconditioned
by the incomplete Cholesky (IC) factorization the
CG-method s quite efficient for symmetrical positive
definite (SPD) problems. At first one of the main lines of
developing the ICCG-method was scarching and investi-
gating various kinds of incomplete decomposition [4-6]. A
number of references (see, for example, [7-97) report
attempts to extend the ICCG application field (it can be
pointed that some generalizations of the CG-method have
been obtained earlier, for example, [ 10]). The authors, for
instance, of [11-13] made efforts to develop parallel and
vector versions of the ICCG-method. These and other
relevant aspects dealing with the preconditioned CG-type
methods can be found, for example, in the survey [14].

The present paper proposed another kind of ICCG
development. We assume that some of the comjugate
directions are defined. Then an orthogonal projector can be
constructed on their basis. Linear systems to be solved can
be changed using the projector. Moreover, an inexpensive
and more correct initial guess for the CG-method can be
obtained. This approach allows us to develop a number
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of efficient modifications of the ICCG-method for five-
diagonal linear systems. Experimental evidence of the
proposed method’s efficiency has been obtained.

Recently, deflation of the conjugate gradients has
been proposed [15] This approach consists of the
orthogonalization of the current residual, not only to alf of
the previous residuals, but also to the columns of some n x k
matrix E, where n is a linear system order. These columns
are a set of linearly independent vectors. However, the
choice of E has some difficulties. In [15] special decomposi-
tion of the domain to be simulated was carried out. Then the
columns of E were defined using information about these
subdomains. At last an orthogonal projector was con-
structed based on E. The present paper can be regarded in
terms of deflated conjugate gradients. However, we obtain
the projector from the very beginning. It is important to
point out that we can define the matrix £ according to the
structure of the linear system matrix which does not depend
on the domain to be simulated. Note also that such a
description of E can be easily formalized.

2. THEORETICAL GROUNDS

We wish to solve
(1)

where 4 is n x # symmetrical M -matrix. The CG-method for
(1) comsists of computing the sequence of » vectors
Pos P1s —» fIn_1 Which are the basis in R” and satisfy the
condition

PiAp;=0,

i# J. (2)

This method can be written [3]
1. Construction of preconditioner H,.
IL Initialization ro=b— Ax,, po=Hy 'r,.
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ITI. Iteration for i =0, 1, 2, ... until convergence DO

rTHG'r
. P;'rAPf |
Xip1 =X+ P
i =ri—o;Ap;,
B _",'T+[Ho_l"':'+1
T TH Y,

Pr+1=H61r1+1+BrPi-

Here x; is an initial approximation, H, is some nxn SPD
matrix. If H,=1, where [ is the identity matrix, then we
obtain the CG-method.

We assume that & <n of 4-conjugate vectors pg, py, .,

Pr_y are known. Denote E,=span(pg, P, -» Pr_1)
E, =R", dim E, =k, Then
k-1
pdAp)”
Q=Y —F, — (3)
i=0 pr Apr

is the projector onto E, and R =J— ( is the projector onto
some subspace E,. As it follows from [16, p.643], R" =
E, ®E,.

Note one property of @ and R:

AQ=0"4=074Q, “
AR=RTA=RTAR
THEOREM 2.1. Let k<n of A-conjugate vectors

Pos Py v Pr_1 are known. Then the system (1) solution can
be written in the form

k—1

x=yp+z=Y

i=0

aipi+za (5}

where a;= pl b/pT Ap, and z € E, is the solution of

Az=R75. (6)

Proof. If we substitute (5) into (1) then system (6) will
be obtained. Now we must show that ze E,. According
to {4) we can write A7'RT=RA~! Then the result
immediately follows fromz=A4"'RTb=RA~'b. |

As z = Rx then the following system can be considered
instead of (6):

ARx =R, (7)
As rank AR=rank[AR, RTh]=rank R=n—k, then the

system (7) is compatible. AR is a symmetrical (it follows
from (4)) and singular matrix. However, according to [17,
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p. 119} the CG-method can be applied to (7). Then
the solution of (7) will be defined using A-conjugate
vectors f,, .., p,_;. These vectors are orthogonal to the
hyperplane ARg=0. Therefore /=n—k. Denote p,=
Por s Pu_1 =Py

The solution of (7) is not unique. It can be given in the
form

n—1

x=y+z

i=k

*i P

where «; are the coefficients of vector z decomposition by
the set p,, .., p,_, and y is an arbitrary vector, belonging
to E,. We assume-

LN

y=Xxo= 3 ap;. (8)

i=0

Then we obtain the solution of system (1).

Thus, if we know k of vectors py, ..., p_ 1, satisfying (2),
then the solution of (1) decomposes into twa independent
steps. At the first step the initial guess (IG) x, due to (8) is
determined. At the second one the system (7) is solved by
the conjugate gradient method. The computational scheme
of the IGCG-method follows from the scheme of the
CG-method if the solution of (7) is searched over E,:

I. Calculation of x; according to {8).
I1. Initialization of ro = b — Ax,, g = Rry.

II. TIterate for i=0, 1, 2, ... until convergence DO

rIRr,
a;=

prap;
Xip1 =X+ 0 5,
Fip1=r—o; AP,
ﬁ ¢+1th+1

= .7

r; Rr;

Peci=Rri  + 8.5

Note 2.1. The IGCG-scheme has an advantage because
it, in the absence of round-off error, ensures the exact solu-
tion in at most n— k& iterations, whereas the CG-scheme
gives the exact solution in at most # iterations,

The rate of convergence of the conjugate gradient method
depends on the matrix 4 condition number x = A, (A}
Amin(4) [3]. Here A,,,,(A4), Anmn(A4) are the largest and the
smallest eigenvalues of A, respectively. It is known, that a
successful choice of the SPD matrix H, allows us to decrease
the condition number of the matrix T=H;'A [7]. There-
fore we shall solve the system H;'Ax=H;'b instead of
(1). Let its solution be computed due to the CG-scheme. If
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k of A-conjugate vectors py, ..., Pr_ are known, then it is
possible to construct the projector R and calculate the
initial guess according to (8). Then we must find only z.
[t can be provided according to the IGICCG-method.
Its scheme immediately follows from the ICCG-scheme:

I. Construction of preconditioner H,.
Il. Calculation of x, according to (8).
{1 Initialization of rg=b — Ax,, o= RH 'r,.
1V. [lteration for i=0, 1, 2, ... until convergence DO

rTRH 'y,
4=
piAp;

H

X=X+, 5,
Fir=F—o;Ap;,

PRI
’ r,.TRHO“r,- ’
ﬁi+l=RH[;1ri+l+ﬁiﬁi'

Note, that the following system is practically solved,

H7'ARx=Hy 'R, (9)

beginning from initial guess x,. Nonzero cigenvalues of
the matrix H;'AR are placed within [i.,;.(H;'4),
Amax{ H 5 1 4)]. It can be proved using extremal properties of
a guadratic forms cluster {18, p. 2697. As the search of the
system (9) solution is over £, then the rate of convergence
will be affected by eigenvalues, corresponding to eigenvec-
tors being in E,. Thetefore the matrix H; 'AR condition
number over E, does not exceed the matrix Hg'A
condition number. [t means that convergence of the
IGICCG-method is not worse than the convergence of the
ICCG-method.

In order to construct A-conjugate vectors pg, ., Pr .
we use the variant of a well-known orthogonalization
procedure [19, p. 1497. Let us consider some set of linearly
independent vectors ¢g, §,s . gx—, k<, and then we
perform on its basis the required vectors p;, =0, .., k— 1,
in the form

P():‘hs
Pr=q1+ toPos

Pr=qa+faoPot HaiPrs (10)

P v=ge_yFHre qoPot M Prt oo Pl 2 PR
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where the coefficients g, ; are defined by the ratio

9iAp;
p;'TAPJ’
=01, i1,

Hi =
(11)

which provides the property (2).

Before construction of the specific IGICCG-schemes we
first consider some general properties of £ and R in the case
of the following special choice of g,.

We define & natural numbers §,1i,, .., such that
1€i, <i,< -~ <i;<n Then we introduce the subsets
N.={1,2,.,n), N,=1i\, b5, ..iy}, NI =N\N,. Let ¢,
be the ith column of an n x n identity matrix. Now we can
take gy = €> §1=€hps vy Gry = €

Then A-conjugate vectors py, .., pr_, can be obtained
according to (10), (11). The projectors Q and R also can be
constructed and subspaces £, and E, can be defined.

THEOREM 2.2. ANl the columns of R with numbers from
N, and all the rows of Q with the numbers from N, are zero
ONnes.

Proof. At first we show that z7Ay = 3TAz=0 is true
for arbitrary ye E, and ze E,. Indeed, let x=y+ 2z As
y=0x, z=Rx then zT4y=x"RTAQx=xT(/- Q7) AQx=
xT(AQ — QT 4Q) x =0, according to (4).

It is clear ¢, € E,, where ;e N,. Then e;fAz':O for
arbitrary z e F,. It means that ail the elements of vector Az,
ze £, with numbers from N, are zeros. As the system (7) is
compatible then R™b contains corresponding zero elements
for arbitrary b, 1t can be true only when the columns of R
with numbers from N, are zero columns. As follows from
the choice of g, ..., g, _, and {10), ali the elements of vectors
Pos - Pe—, With the numbers from N, are zeros. This
means that all the rows of ¢ with the numbers from N, are
zero rows. B

Note 22. The cost of the proposed computational
schemes includes both the cost of the preliminary steps
which are performed only once and the cost of the itera-
tions. The first cost, as well as in traditional CG- or ICCG-
schemes, is significantly lower than the latter, if only the
probiem of the initial guess construction does not require
substantial computational effort. In this turn, the IGICCG-
scheme will be more efficient than the ICCG-scheme if the
cost of its iteration is lower than the cost of the 1CCG itera-
tion, The same reasons are valid when comparing the CG-
and IGCG-schemes. In some important cases the matrix A
structure allows s to construct some (rather great) number
of simple conjugate vectors, Then we can implement the
method of the initial guess choice on the basis of these
veetors, which has negligible cost. Moreaver, the matrix R
structure in these cases provides the efficient iteration
process.
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FIG. 1.

3. LINEAR SYSTEMS WITH THE
FIVE-DIAGONAL MATRIX

Consider the linear systems with the symmetrical five-
diagonal M -matrix 4 (Fig. 1). Assume that the IGICCG-
algorithms are started from the initial approximation
xo =0. If other values of x, are used, then the considerations
below are true for the transformed equation A%=>b where
X=X~—Xy, b=b— Ax,.

3.1. ALgoritHM IGICCGL. We assume that m is an
odd number, Consider & =int[{n + 1)/2] of vectors p,=
0,..,0,1,0,..,0)7, each of them, including only one unit
component, in the odd position. These vectors satisfy condi-
tion (2} Denote £, =span(pg, ..., Pr_, ). As it follows from
(8), the initial guess x, = y can be written in form

T
Xp= (ﬁ, 0, fﬁ, 0,.., }ﬁ 0, ) .

a, a3 ;-

It is clear that all the edd components of the vector
ro=>b— Ax,equal zero. The matrix R structure is presented
in Fig, 2. Nonzero clements of the matrix R odd row

odd row

Cim Cli.-sol"'{. ul;
Q 010 o]

N

even I'ow

FIG. 2. Structure of projector for the IGICCG1-method.
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are defined by ¢;,_,, = —gi_w/a; di_1=—fi_1/a; hi=
—fifa;; w,=—gfa,. As AR is a symmetrical matrix then
the structure of R ensures that for arbitrary ge R”", odd
components of the vector ARg=RAq are also zeros.
Hence, the odd elements of the vector Ap equal zeros, where
peE,. So, all the odd elements of the vector r;, =

r;—o;Ap; are zeros by induction.

Hence it is not necessary to compute all the odd
components of the vectors 4p, xdf, r. Moreover, when
computing the inner products " Rq, p7Ap, where g = H ; 'r,
then only even components are multiplied because the odd
components, at least in one factor, will be zeros.

3.2, In a more general case we shall assume that # is
divisible by m and m is divisible by s. Then we introduce
k,=n/s and

Ny={s2s ..k} N,=NA\N/.

In this case k=n-—£k,. Now we define vectors g,
i=0,1,.,k—1, as gq,=e¢;, jeN,, i=j—I1—int[jis]
Applying (10) and (11), we obtain k of 4-conjugate vectors
Po» -+ Pe—1 and construct the projector R In such
IGICCG-algorithm vectors py, ..., p, _; have zero elements
with numbers from N,/ Then from (8) it follows that x, has
all zero clements whose indices are divisible by s. Only
entries of x, with numbers from ¥, need to be calculated
according to Theorem 2.1,

Matrix R contains nonzero columns only with numbers
si, i=1,2, .., k,, from Theorem 2.2. All the rows of R with
numbers si, i =1, 2, ..., k,, are zero ones except for the main
diagonal entries which equal unity. This fact must be taken
into account when the matrix—vector product Rg will be
computed. Vectors ¢ and Rg have coinciding elements with
numbers that are divisible by 5. We can obtain elements of
Rg with indices from N, in two steps. First we calculate the
values

(AP.')T q

, i=0,1, ., k-1
P;‘TApj

V=

Then we find the sum of products y,p, using backward
substitution:

e 1= Yeo1s
2= a2+ — — —1s

Cho2=Vio2 T Be 1k_2€k_1 (12)
Co=Yo+ HLo&1+ - + ey 08ko1.

As xo€ E, then ro=b — Axy,= R"b. Hence r, has that all

those indivisible by s elements equal zero. As pe E, then
Ap = RV A4p, according to {4). Therefore all the elements of
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Ap with the numbers from N, equal zero. As can be easily
obtained from the induction vectors r,,,=r,—a,A4p,,
p;€ E,, also have zero entries from N . Consequently only
those divisible by s elements need to be multiplied when the
products pTAp, adp, r"RH ~'r will be calculated; ic., only
k, multiplications can be carried out.

It can be pointed that ratio for 5, | can be transformed
to

Pis1=RH i =B p)

It can be seen that only elements of 5, with numbers from
N, need to be multiplied by £, because all the elements of
q with the numbers from N/ are multiplied by zero entries
of Rin the product Rg.

32.1. Arcoritim  IGICCG2, Let s=2 Denote
m, =m/2, In this case &, = k. Then application of (10), (11)
leads to simple ratios for the conjugate directions,

i=0,1,..,m —1:

k=1,

Pi= €4 (s

pf:ezi+l+1}21+l—mpi—m]a r=,, .

where the coefficients v,,, | are computed recurrently

i=0,1,.,m—1;

V20 1= —&2+1/%2i 415

Uyig | = ot T V20 1 B2ip Lo

i=my, . k—1—m,.

Vv = — Gus1/tais
(13)
Now we shall find the initial guess x,= y=3¥-} «, p, using

these vectors p;. In order to compute a; we first define

i=0,1,.,m—1,

Chk—1

d;=byy,

a1'=b2i+l+ﬂ2i+1~mairm|s i=m,,...

Then we obtain

i=0,1, .., m -1,

ai=°~€/azf+1,
if ,k—1.

0=/t 1y I=my, ..

As the valves uy, ,, i=m,, .., k — 1, are used in ratios for «,
then we should provide an additional calculation of u; , |
fori=h-my, .., k-1, according 1o {13).

Odd components of the initial guess vector are deter-
mined by the backward substitution

i=k—1,., k—m;
i=k—m,—1,.,0
(14)

Xor2i+11= %is

Xor2ig 1] =%t U2y 1 Xo[2i4 1 +m]>
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We shall compute the product Rg in two steps, as pointed
above, At the first step we define

vo=—fiq:/a;,
vi=— g2+ fa @2 0y os
i=1,.,m —1,
= —[f2toi+ foiv 1020ia ) F 8rivt —m¥iwn W tais 1
i=my, .., k=1

At the second step the odd elements of § = Rq are calculated
according to (14) with vy against « and § against x.

The structure of R for this case is presented in Fig. 3.
Nonzero elements of R are defined by the ratios

v
_ﬁ—vrn—l 1,1 g:’—jm_
p.f“ifvm—l_ 3 n ]
ai j:[airjm
f'-f\m 1.1 gi—jm.
pu»\m+1_ ‘9 ]__[ >
i j—lai—jm
_f:+\m—]8v+1] g|+f:n
le—\mfl H
ai+lm = Oaf+_}?)f
.fr+tm 31+1[ gH—jm
p1|+\m+l n
i+ vm ,ﬁoal‘f’j”l
where
9\-.I=1 (1 v 1 1 (1 A
$; +oi(14+o "1+ - (L +a))---))
2
ol = givi—im
i *
Aigti—1ymQig jm
i=13 ..,n—1; v=0,1,2,..,k&;
—~ v
=mt[i/m]; I=nm—k, I Eiim_y
Jj=1 al - jm
when v=40.

322 AvcoriteMm IGICCG3. Let 5=3. Denote m, =
m/3. Then

Pi=¢€s4,
Usiv1
Priy1=€342F Dais
u3i+i
fori=0,1,..,m —landfori=m;, ..k, —L:
Bivi1—m U3iq 2
P2=¢€3 1~ Pai—my + Paci—mpy+1s
JN+l—m 3i+2-m
g3i+2—m D3y

Pr+1=€342— p2(£7m1)+l+u Pz

3i4+2—m 3i+1
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o O O 0 0410

o O

even Tow

o0 .-

\Pi,i-km-i _Pi,i—kmﬂ t

pi,bm*i i,{-ma P'L;'L-;_O P{,h‘.

H,ivrﬂfiﬂ,i‘m,i ’ ;Pi,'l'-"im"i .Pi.‘l*g\l“:l odd row

FIG. 3. Structure of projector for the IGICCG2-method.

Here U and ¥ are given by

Usjp1 =341, Uaie1=~J3i4 013

2 . —
Usii2=yipr—~ f3y 1 [Usin 15 U3ip2= — Uzt Baipt/M3iey
fori=0,1,.,m—landfori=m,, ...k, —1:

M3 =a3l'+1_g§i+l—m/u3i+l—m_v§i+2—m/“3i+2—m;
Vi1 = = a1+ BaigaomUsiva—m/Usiv2—mh
1‘3:‘+z:asr-m_—g§1-+2_m/”3f+z-m_”§.-+1/”31+r;
Viig2=—8&x+1Y3i+1/ U1
From (8) we obtain

k-1

Xo= Z (@31 Prit ®sie2 Poii i)
i=0

where
A3 1= ‘b3t'+ 1/1"31'+ s
Uz q 2= (D300 V30 (B34 1) U502

fori=0,1,..,m —landfori=m,, ...k, — I:

Haia1 = (Paie 1 — i 1 m@ai (P V32 m @354 2w W Wi 15
Uy =03 2= 34 2-mBriczomT Usin 1 Eaie 1 )34 2-

We find the components of vector x, by the backward
substitution again,

Xorsi+2] = 3425

(15)

Xorai+11= %ar+ 1 T P34 1 Xorai+ 2]/“3i+1

fori=k,—1,.,k,—m andfori=k,—m,—1, .., 1,

Xoryie23 = %342+ (P34 2 X003+ 1 m]
"83i+2x0[3.'+2+m])/”3i+2; (16)
Xorai+ 11 = %341 T (V301 X034 2
— &3+ 1 %0341 ) U3
The components of vector x, with the indices 3/ are zeros.
The matrix—vector product §= Rg, where g is an
arbitrary vector, is carried out in the following way. Those
that are indivisible by three components of § we find in two
steps. At the first step we define the values
71=0;
Y2 = — f2q3/us;
Vaie1 = —falds/Usiv s

Y3i42= _(f3f+2q3(r'+ 1= V3 1 Va0 1) Ui 42

fori=1,.,m —landfori=m,, .,k — 1,

Yair1= —{Laiv1—mV3ist—mt [3:ds
—Usipa mVaiv2-m)Usig1s
Vair2z= —(Z3ir2-mVip2—m T Sriv 2936+ 1)
— U341 V341 Uai 02
At the second step we define oy, . | =¥, 1, %3;4 2= V314 2-
Then we find the sum of the products y; p, according to (15)

and (16). The values x,3; 4 17> Xor3:4 27 ar¢ equal in this case
to the corresponding components of vector §= Rgq.
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FiG. 4. Structure of projector for the IGICCG3-method.
The structure of projector R for the method under TABLE]
consideration is ]_)res_er‘\t.ed in Fig. 4, where nonzero entries Efficiency Estimate of the Investigated Methods
of those that are indivisible by three rows are denoted by a
*star” symbol. The ratios lor nonzero elements of R will be Method  Preliminary steps cost  [terationcost  Cost of Ry
omitted because of their complicity.
' ICCG [3] 81, + 81, + 31, 161, + 13z, 0
Note 3.1, The IGICCG2- and 1GICCG3-algorithms do IGICCG1 1058, + 11, + 42, 14, 4106, 251, + 151,
not require any additional memory for arrays U and V IGICCG2 1230, 41250, + 48, 14, + 100, 250, 4157,
which can be placed, instead of elements of the main IGICCG3 1530, + 145, v 5ty 1450, 4951, 451, 4251,
IGICCGA 16750, + 17.51,+ 8.251, 15751, + 10.5, 6.75¢, +4.25¢,

diagonal of the matrix 4 and residual r, with the numbers
from N, that are unused in the iteration cycle.

3.2.3. Assuming s=4 the IGICCG4-algorithm can be
obtained in a similar way. Here & =3n/4. However, it
requires almost » additional memory cells. This algorithm
has been constructed during the present work but we omit
the corresponding ratios because of their complicity.
IGICCG4 will not be used in numerical investigations but
we shall present some estimates for it (see Section 4) with
the aim of showing some limitations in the line of
IGICCG-methods development.

Note 3.2, 1f we define s =35, 6, ... then the corresponding
IGICCG-methods can be obtained. We note that memory
requirements increase significantly. These methods need not
be developed because the cost of the matrix—vector product
Rg also increases rapidly as can be seen from the next
section.

4, SOME PREVIOUS COMMENTS

We present the efficiency estimate of the developed
IGICCG-algorithms. TableT describes the preliminary
steps cost and the iteration cost for each of the methods

proposed. It also includes these costs for the traditional
ICCG-method [3]. CPU times of double precision floating
point multiplication, addition, and division are denoted as
tms 14, and ¢y, respectively. Here we used an ordinary LU-
decomposition of 4, where I/ = DL and L consists of three
nonzero diagonals corresponding to nonzero diagonals of
A. We implemented an iteration free of division for all the
investigated methods, Therefore the preliminary steps cost
increased slightly. Analysis of Table I shows that all of the
developed methods have an iteration cost that is lower than
the ICCG, whereas the preliminary steps costs may shightly
exceed the costs of the corresponding iterations. Thus
IGICCG-methods have some advantiage.

Figure 5 presents the cost of iteration without precondi-
tioning and computation of Rg {curve 1) and the cost of Rg
{curve 2) versus &k /n. Here the ICCG-method corresponds
to k,/n=1. The resulting curve (curve 3) shows that the
methods IGICCG2 and IGICCG3 are approximately
optimal ones and subsequent decreasing of &, yields to
increasing the total iteration cost because the cost of Rg
increases rapidly. We note that the IGICCG4-method
proved to be less efficient than IGICCG3. Furthermore, it
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FIG. 5. Cost of iteration of investigated methods without precondi-
tion and cost of Rg products versus k, /n.

requires additional memory as pointed out above. Hence to
provide the correct comparison with IGICCG4 we can
use an additional diagonal in incomplete decomposition
to improve the ICCG-, IGICCGI-, IGICCG2-, and
1GICCG3-methods performances. We shall not do that and
IGICCG4 will not be used here.

From the previous description of the IGICCG, it is not
clear whether or not these algorithms degrade because of
their loss of orthogonality. Next we consider this problem in
some more detail. Difference between the ICCG- and
IGICCG-schemes is in the presence of an additional
matrix—-vector product §= Rg in the latter. According to
[20, p. 93] we can write

18] <271 +0) IR],, Mg

where ! 1s number of binary digits in the mantissa of the
floating-point word, J is the number of nonzero entries in
the matrix R row (8 =4 for IGICCGI and § =2n/m for
1IGICCG?2 and IGICCG3). It can be easily shown that all
the three deveioped IGICCG-methods have (Rf, <1 if
only the linear system (1) matrix 4 is the diagonally
dominant one. Then

MGl <271+ 0) gl -
So the matrix-vector product under consideration leads to
a slight (normally #/m < 100) increase of round-off error in
the IGCG-methods. However, it is more important to
estimate preconditioned versions of the methods proposed.
In this case ¢ = (LU) ™' r. Thus [21, p. 36]
JAg} o <27 % 1%k g o,

where &, ~ 1, k* = A (LU)f A (LU). Hence il {1+ 3) <
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k, n*7x*, then § contains exactly the same number of true
digits as ¢. Therefore the procedure of projection transfor-
mation § = Rq will be stable. This result shows that if the
preconditioned CG-method in the presence of a round-off
error gives the solution of a linear system with the required
accuracy, then this solution also can be obtained by using of
all the three preconditioned methods proposed.

5. NUMERICAL INVESTIGATION

Consider the problem of two-dimensional steady-state
numerical simulation of semiconductor devices. Drift-
diffusion charge transfer equations [227] can be written as

V3¢ =n,(exp{¢) d,—exp(—¢) D,)— Ny + N, (17)

V- (pn, exp(¢) VP, )= R, (18)

V-(un.exp(—¢) VP, )=R, (4, P, P,)eQ. (19)

Boundary conditions are defined as

(¢s d)ne qbp)la:z. = (¢'03 (pnos ¢p0);

(2 2 22,
ay’ on’ on

=0.

o525

Here ¢ is the electrostatic potential, @,=exp(¢,), and
&, =exp(—¢,), ¢, ¢, are quasi-Fermi levels for holes and
electrons, respectively. We have used standard models for
the values 1, u,, R, n,, which can be found, for example, in
[23]. Note, that n,., N,, N, are given functions of spatial
variables; R depends on the variables ¢, @, @,,.

Finite-difference approximation of (17}-(19j) is carried
out on the continuous rectangular grid according to
Scharfetter—-Gummel’s scheme [24]. We use one of the
Gummel-like iteration procedures [25] for the nonlinear
system (17)}-(19} solution. Each of these equations in this
case leads to the linear system with the five-diagonal
symmetrical diagonally dominant M-matrix [26, p. 146].

Three structures of the bipolar transistor were simulated
using the ICCG- and 1GICCG-methods to solve linear
systems. These structures are vertical (Fig. 6a), planar
(Fig.6b), and submicron shallow-profile. Impurity
distribution of vertical and planar structures is

N=5x10"+5x 10 exp{ —7.00892
x (x? +0.1646272%p*)2} -5 x 10"
x exp{ —x{/2.298513} + 5x 10*% cm ~7,
where t =1 for x 24 and ¢ =0 for x < 4. The structure and
doping profile of a submicron transistor is taken from [27].

Numerical experiments have been performed under the
following conditions. Simulation was carried out under
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FIG. 6. The first and the second test problems (062, = M o+ M z+ M, 602, =080\32 ).
biases Fgg=—0.6 V, V5=1V (vertical and planar struc- TABLE 11l
tures) anFl Var=03V, V.= 1‘.9 v (sul?mlcron tranSI.stor} Vertical Transistor Simulation (= 10~1?)
on the grids of 24 x 25 mesh points (vertical and submicron
devices) and 24 x 36 mesh points (planar structure). An Electrons Holes
initial approximation for variables ¢, ®,, &, was computed
. Method N, ts T N, LS T
according to [26, p. 163]. 1
. Aslthe matrices properties change we.ak_ly during outer ICCG (3] 37 248 B 31 225 o
iterations then the convergence characteristics are presented 1GICCG1 35 1.92 1.29 32 1.76 1.28
below only for the first outer iteration. Inner iterations were IGICCG2 35 183 136 30 165 1.36
terminated as soon as |Ir.|| .. /llroll » < & where i is number of IGICCG3 32 165 1.50 28 143 1.57

inner iterations. All the experiments were carried out on an
IBM PC AT 386/387 with double precision. The developed
methods were compared to TCCG [3]). It can be pointed
that one more efficient implementation of the PCG-method
is known [28]. Residual vector 7 of the transformed system
must be compuied instead of system (1) residual » at each
iteration of this algorithm. These residuals are connected by
the ratio r = (D + L} 7, where L is strictly lower triangnlar of
A and D is diagonal. Ordinary values of J|(D+ L}||, for
systems to be solved are ~ 10°* when the external bias
V =19 V. Therefore a small value of |7 ., can be obtained
using the method [287, whereas ||#]| , will be large and the
accuracy will be poor. The same results occurred in our

TABLEI1

Vertical Transistor Simulation (e = 107%)

numerical investigations for linear systems arising from
both continuity equations (18) and (19). (1t is worthwhile to
point out that these systems are quite difficuit to solve.)
Therefore this method [28] cannot be used in our
experiments.

Table 1l presents a number of inner iterations N, and the
linear system solution time ¢ for each of the investigated
methods. In addition Table IT includes the speedup factor 1
for each of the developed methods. These tesults are
obtained when &= 10"° Analogous characteristics corre-
sponding to ¢ = 10~ are presented in Table I1}. Note that
the initial residual norms were |rpl.. =0.1x10% and

TABLE IV

Planar Transistor Simulation (¢ =10"%)

Electrons Holes
Method N, {3 T N, t s T
1ICCG [3] 25 1.64 — 23 1.59 —
IGICCGI 26 1.45 1.13 22 1.24 1.28
1GICCG2? 22 1.21 1.36 21 1.15 1.38
IGICCGS 17 0.94 1.74 19 1.05 1.51

Electrons Holes
Method N, 3 t N, {3 T
ICCG [3] 51 4.94 — 24 2,36 —
IGICCGI 50 395 1.25 23 1.81 1.30
IGICCG2 48 373 1.32 23 1.81 1.30
IGICCG3 47 352 1.40 22 1.60 1.48
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TABLE Y

Planar Transistor Simulation {g = 10~'%)
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TABLE VII

Submicron Transistor Simulation (¢ = 107"%)

Electrons Holes Electrons Holes Potentjal
Method N, t s T N, t, s 1 Method N, s 1 N, s 1 Nos T
1CCG [3] 64 6,26 — 18 173 — ICCG [3]1 65 428 — 52 346 — 16 110 —
IGICCGL 59 4.50 1.39 37 292 1.28 IGICCGt 61 319 1.34 49 264 131 16 084 131
IGICCG? 59 4.50 1.39 37 292 1.28 IGICCG? 48 288 166 41 220 157 11 066 167
1GICCG3 56 4.17 1.50 34 2,58 1.45 IGICCG3 34 176 243 26 137 253 10 0.61 180

[roll o =03 %107 for the electron and hole continuity
equations, respectively.

Results of the linear systems solution when the planar
transistor was simulated are presented in Table IV
(e=107%) and TableV (¢=10""2). The initial residual
norms are the same. It can be pointed that the initial
residual of Poisson’s equation (17) proved to be small for
both transistors and that the corresponding linear systems
were solved by not more than four iterations due to the
efficiency of the initial approximation choice method [26,
p. 163] and because the linear system malrix in this case is
the strongly diagonally dominant one. Therefore these
results are not presented in Tables I, III, IV, and V.

Tables V1 and VII present the above characteristics for
¢=10"°%and & = 10~ ', respectively, when a shallow-profile
device was simulated. These tables consist of information
about the solution of all three equations (£17}-(19). Initial
residvals are |rplj,, =008 for Poisson’s eguation and
7ol = 0.4 x 107, jlryli., =0.1 x 107 for electron and hole
continuity equations, respectively.

As can be seen from Tables II-VII, efficiency of the
methods proposed is not only due to {ower cost of iteration
but also it is due to a slight decrease in the number of
iterations. Using the IGICCG4-method almost does not
yield to the subsequent reduction of iterations performed, so
the resulting efficiency of this method is almost similar
to IGICCG3 (we must recall that IGICCG4 needs an
additional memory).

Analysis of numerical investigation results indicates that
all of the developed methods proved to be more efficient
than the traditional one {3].

TABLE VI

Submicron Traansistor Simulation (= 1075)

Electrons Holes Potential

Method N, s T Ny oLs T N, s T

ICCG[3] 49 324 — 20 131 — 9 060 —
IGICCGT 46 247 131 21 110 119 9 050 120
IGICCG2 36 198 164 21 110 119 7 038 1.58
IGICCG3 25 132 245 17 093 141 6 033 182

In conclusion of this section a few comments in order.
Solution of the system (17)-(19) only is spatial distribution
of the variables ¢, @,, ®,. External currents can be
calculated on these bases. The use of all the investigated
methods leads to exactly the same external currents. The
balance of these currents is held to high accuracy (~ 10~7%).
We choose low injection regimes for all three transistors
because in order to ensure fast convergence of outer
iterations (in our experiments solution of (17)-(19) was
obtained after five outer iterations for the first and the
second problems and after four iterations for the third one)
in this case we must solve linear systems with high accuracy.
The stopping tolerance ¢ = 10~ % is sufficient to provide this.
1t is worth pointing out that the second problem cannot be
solved using such iterative procedures as SOR or a strongly
implicit method [29] (see, for instance, [30; 26, p. 2987).

6, CONCLUSION

In this paper a technique of the initial guess choice for the
CG-method has been proposed. The IGCG- and IGICCG-
schemes have been developed on its basis for the solution
of linear systems with the symmetrical positive definite
matrices, Three preconditioned modifications of the
IGICCG-method for systems with five-diagonal matrices
have been proposed. Experimental evidence of their
efficiency has been obtained using one of the important
kinds of boundary value problems. It also can be pointed
that all of the investigated methods can be improved by
using another kinds of preconditioning.
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